14 06 2023
求曲面 e^z - z + xy = 3 在点 (2,1,0) 处的切平面及法线方程。 首先,我们需要计算曲面在给定点的切平面。曲面的切平面垂直于曲面在该点处的法线向量。 为了计算法线向量,我们需要求出曲面函数的偏导数,并将给定点的坐标代入。 首先,对于曲面方程 e^z - z + xy = 3,对 z 进行求导得到: ∂/∂z (e^z - z + xy) = e^z - 1 接下来,对于曲面方程 e^z - z + xy = 3,对 x 和 y 分别进行求导得到: ∂/∂x (e^z - z + xy) = y ∂/∂y (e^z - z + xy) = x 对于给定的点 (2,1,0),将其代入偏导数的表达式中,得到: ∂/∂z (e^0 - 0 + 2*1) = 1 ∂/∂x (e^0 - 0 + 2*1) = 1 ∂/∂y (e^0 - 0 + 2*1) = 2 因此,在点 (2,1,0) 处的法线向量为 (1, 1, 2)。 接下来,我们可以利用法线向量和点 (2,1,0) 来构造切平面方程。切平面方程可以表示为 Ax + By + Cz + D = 0,其中 (A, B, C) 为法线向量,(x, y, z) 为曲面上的任意一点,D为常数。 代入法线向量和给定点的坐标,得到切平面方程: 1*(x - 2) + 1*(y - 1) + 2*(z - 0) + D = 0 化简得到: x + y + 2z + D - 4 = 0 因此,在点 (2,1,0) 处的切平面方程为 x + y + 2z - 4 = 0。 综上所述,曲面 e^z - z + xy = 3 在点 (2,1,0) 处的切平面方程为 x + y + 2z - 4 = 0,法线向量为 (1, 1, 2)。
延伸阅读
    当我离开家的时候 你满怀深情吹响号角
    香蕉属于哪个植物科目?
    如何进行人机交互和用户界面设计?
    我国综合课程概念提出的起源与发展
    论文:我国哪些重要的研究领域与电路知识息息相关,相关领域的研究发展现状与国际是否存在差距,有哪些不足需要我们这一代努力完善,联系我们书本的知识点,说明